Proving correctness of the stop-and-wait protocol

Ethan Leba

April 21, 2021

Contents
I__Introductionl 1
(1.1 Approach| 2
(1.2 Simplifications of the model] 2
(1.3 Explanation of the protocoll 2
1.3.1 Sender behavior]. 2
[.3.2 Receiver behavior. 3
2 Implementation| 3
T Modell 3
22 Proofl. 5
3__Conclusionl 8
BI Resultsl.o 8
[3.2 Personal Progress|. 8
[3.3 Summary| 8
[4 Appendix A| 8
5__Source Codel 9

1 Introduction

As networks facilitate communication across the globe in any range of con-
ditions, the connections must be robust to various disruptions; packets may
be lost, intercepted, or delayed. One protocol for dealing with lost packets
is the stop-and-wait ARQ (Automatic Repeat Request) protocol. Stop-and-
wait is used in Bluetooth communication, and can be seen as a special case
of TCP with a sliding window of size 1.

In this paper, we describe an implementation of a model network us-
ing stop-and-wait in ACL2(s), and demonstrate a mechanical proof of the
following theorem:

The data contained by the receiver will always be a prefix of the
data being sent by the sender, regardless of network conditions.

1.1 Approach

After a brief investigation, we found that there are no pre-existing proofs
of this protocol in ACL2. Furthermore, there are many variations on the
stop-and-wait protocol, so we suspect that it’s unlikely this specific model
has been implemented and proven elsewhere.

1.2 Simplifications of the model

For the simplicity of the proof, we omit the following details.

Two-way communication. We use a one-way communication model, where
the receiver cannot respond with any data.

Handshakes and teardowns. No handshakes and teardowns take place.

Packet delay. We assume that an ack /packet will either be sent, or dropped.
No packet delay is modelled.

End of file. The simulation completes when the sender’s data has been
fully transmitted, so no EOF handling is needed.

1.3 Explanation of the protocol

Here we describe a high level overview of how the protocol functions, which
will map to the ACL2 code provided in the implementation section. Both
the sender and the receiver start with a sequence number starting at zero,
representing the last packet sent or received, respectively.

1.3.1 Sender behavior

The sender will send out the (sequence number)’th chunk of data in a packet,
along with the sequence number at the beginning of each round. The sender
will wait for an ACK and respond in one of the following ways.

1. If no ACK is received, do nothing.

2. If an ACK is received with the expected number, increment the se-
quence number.

3. If an ACK is received with a greater number, set the sequence number
to the one received.

1.3.2 Receiver behavior

The receiver will wait for a packet and respond one of the following ways.

1. If a packet is received with a sequence number one greater than the cur-
rent sequence number, then store the packet data and set the current
sequence number to the number received.

2. Otherwise, do nothing.

In either case, the receiver will respond with an ACK containing the
current sequence number after potentially updating it.

2 Implementation

2.1 Model

Firstly, we will show the datatypes used to represent the model.

;; Represents the state of the sender, holding the data to send and
;; the current sequence number.
(defdata sender-state ‘(sendstate ,tl ,nat))

;; Represents the state of the receiver, holding the data received so
;3 far.
(defdata receiver-state ‘(recvstate ,tl))

;3 An event is one of:

;; - 0K both the packet and ack are transmitted.

;3 - DROP-ACK the packet is transmitted but the ack is dropped.
;3 - DROP-PACKET the packet is dropped, no packet to ack.

(defdata event (enum ’(ok drop-ack drop-packet)))

;; Represents a sequence of events that occur in the simulated network
;3 environment.

(defdata event-deck (listof event))

;; Represents the state of the simulation, holding the state of sender
;3 and receiver.
(defdata sim-state ‘(sim-state ,sender-state ,receiver-state))

We opted for a tagged-list representation of the datatypes, to increase
readability over untagged lists. We also implemented a macro, match-letx,
which parallels racket’s implementation and allows us to work with the
tagged lists more easily. The receiver-state datatype does not contain
an explicit sequence number. Instead, we infer the receiver’s sequence num-
ber from the length of the data it has received.

Next, we will show simulator-step, which performs the progression of
one round of the simulation.

(definec simulator-step (sim :sim-state event :event) :sim-state
"Performs one round of the simulation with the given event."
(if (simulator-completep sim) sim

(match-let* (((’sim-state (’sendstate sdata sseq)
(’recvstate rdata)) sim))
(cond
;; Packet dropped
((== event ’drop-packet) sim)
;» OK packet, sender up-to-date
((and (== event ’ok) (== sseq (len rdata)))
‘(sim-state (sendstate ,sdata ,(l+ sseq))
(recvstate ,(app rdata (list (nth sseq sdata))))))
;3 OK packet, sender is behind
((and (== event ’o0k) (!= sseq (len rdata)))
‘(sim-state (sendstate ,sdata ,(len rdata))
(recvstate ,rdata)))
;; Ack dropped, sender up-to-date
((and (== event ’drop-ack) (== sseq (len rdata)))
‘(sim-state (sendstate ,sdata ,sseq)
(recvstate ,(app rdata (list (nth sseq sdata))))))
;3 Ack dropped, sender behind
((and (== event ’drop-ack) (!= sseq (len rdata))) sim)))))

The behavior of the protocol described in Section 1.3 is coalesced into
one algorithm, which contains each of the possible outcomes of a round. For

a precise description of the mapping, see Appendix A. We have also defined
a predicate simulator-completep, which checks if the sender has sent all of
it’s data.

Finally, we see simulator, which performs the entire simulation with the
given simulation state and network conditions.

(definec simulator (sim :sim-state steps :event-deck) :sim-state
"Repeatedly applies simulator-step with the events specified."
(cond

((lendp steps) sim)
(T (simulator-step (simulator sim (cdr steps)) (car steps)))))

2.2 Proof

Firstly, in order to state the theorem programmatically we define two func-
tions to create a predicate for the receiver-sender prefix property, as defined
in rs-prefix-of-ssp.

(definec prefixp (x :tl y :tl) :bool
"Checks if X is a prefix of Y."
(cond

((lendp x) T)

((lendp y) (lendp x))

(T (and (equal (car x) (car y))
(prefixp (cdr x) (cdr y))))))

(definec rs-prefix-of-ssp (sim :sim-state) :bool
"Check if the receiver’s data is a prefix of the sender’s."
(match-let* (((’sim-state (’sendstate ss &)
(’recvstate rs)) sim))
(prefixp rs ss)))

The theorem we stated in the introduction is represented by the following
defthm:

(defthm simulator-prefix-property
(implies (and (tlp d)
(event-deckp evts))
(rs-prefix-of-ssp
(simulator ‘(sim-state (sendstate ,d 0)
(recvstate ())) evts))))

The lemma states that given an reasonable initial simulator state (where
the sender’s sequence number is zero, and the receiver has not collected any
information), the receiver-sender prefix property holds regardless of the data
being sent or network conditions. This is a specific case of a general property
that we will prove:

(defthm simulator-maintains-prefix-property
(implies (and (sim-statep sim)
(event-deckp evt)
(rs-prefix-of-ssp sim))
(rs-prefix-of-ssp (simulator sim evt)))
thints (("Goal"
:induct (simulator sim evt)
:in-theory (disable simulator-step-definition-rule))))

This lemma states that given any starting simulation state where the
receiver-sender prefix property holds, and any set of events to occur during
the simulation, the prefix property holds after applying the simulation to the
provided state.

We can prove this inductively, by showing that:

1. The base case maintains the prefix property.

2. The inductive step, which is applying simulator-step to the recur-
sion, maintains the property.

The base case is trivial, as the simulator returns the state of the simulator
if there are no events left. We now show that each simulator step maintains
the prefix property.

(defthm simulator-step-prefix-property
(implies (and (sim-statep sim)
(rs-prefix-of-ssp sim)
(eventp evt))
(rs-prefix-of-ssp (simulator-step sim evt))))

With no helper lemmas, ACL2 is unable to prove the above. We introduce
a more general lemma which can be applied in the proof.

(defthm prefix-nth
(implies (and (tlp x)

(tlp y)
(prefixp x y)
(< (len x) (len y))
(== index (len x)))
(prefixp (app x (list (nth index y))) y)))

This lemma shows that given a list X that is smaller than, and a prefix of
Y, adding the next element of Y maintains the prefix property. This parallels
the behavior of simulator-step when a packet is received with an expected
sequence number.

(defthm simulator-step-prefix-property
(implies (and (sim-statep sim)
(rs-prefix-of-ssp sim)
(eventp evt))
(rs-prefix-of-ssp (simulator-step sim evt)))
;5 Applying the prefix-nth lemma to the OK and DROP-ACK subgoals
thints (("Subgoal 5’5°" :use
(:instance prefix-nth
(y sim8)
(x sim9)
(index (len sim9))))
("Subgoal 2°5°" :use
(:instance prefix-nth
(y sim8)
(x sim9)
(index (len sim9))))))

We can now return to Lemma simulator-step-prefix-property. ACL2
performs a proof by cases, and we can now apply an instance of this lemma
to Subgoals 5 and 2, the cases when the receiver accepts and appends a
packet. These are the only two cases where the receiver’s data is extended,
so the other cases hold trivially.
Now with Lemma simulator-step-prefix-property, ACL2 is able to
prove simulator-maintains-prefix-property, and the simulator-prefix-property
corollary follows from this.

3 Conclusion

3.1 Results

In this paper, we meet our planned criteria for success: proving the the
receiver-sender prefix property of the stop-and-wait protocol. The network
protocols used in practice are far more complex than the protocol we have
reasoned about, but the behavior of our model is the foundation that proto-
cols such as TCP have built off of.

3.2 Personal Progress

The proof for this paper was constructed incrementally, slowly increasing
the complexity of the model. However, the original model proved to be too
complex to prove correctness with packet loss, so it had to be reworked. One
major issue with that model was the fact that the sender would discard any
data that was confirmed to be received, by replacing the data with it’s cdr,
and sending the car instead of using nth. This at first seemed easier for
ACL2 to reason about, but proving the receiver-sender prefix property while
the contents of the sender’s data was changing made the inductive proof far
more challenging. In addition, the first model had dedicated functions for
the receiver and sender, but we opted to coalesce the behavior for the final
model into simulator-step in order to simplify the proof by cases.

Another challenge was representing the datatypes for the model. The
record type for defdata seemed to be a great fit, but using records in proofs
seemed to cause great difficulty for ACL2. Instead we opted for using a
tagged list structure in the final model.

3.3 Summary

We have now shown a mechanized proof in ACL2 proving the correctness
of the prefix property of the stop-and-wait protocol, a fundamental prop-
erty of network communication that countless applications rely on. Looking
forward, this model has potential to be used as a foundation for reasoning
about more complex network properties and protocols in ACL2.

4 Appendix A

The simulator-step function describes 5 possible outcomes for each set of
events and simulation state. Here we state precisely how the ACL2 function
maps to the description in Section 1.3.

Packet dropped The receiver does not receive a packet, so it does not
respond, and the sender performs step 1.

OK packet, sender up-to-date The receiver performs step 1, and the
sender performs step 2.

OK packet, sender is behind The receiver performs step 2, and the sender
performs step 3.

Ack dropped, sender up-to-date The receiver performs step 1, and the
sender performs step 1.

Ack dropped, sender behind The receiver performs step 2, and the sender
performs step 1.

5 Source Code

The source code for the project can be viewed at https://github.com/
ethan-leba/stop-and-wait-arqg-proof.

https://github.com/ethan-leba/stop-and-wait-arq-proof
https://github.com/ethan-leba/stop-and-wait-arq-proof

	Introduction
	Approach
	Simplifications of the model
	Explanation of the protocol
	Sender behavior
	Receiver behavior

	Implementation
	Model
	Proof

	Conclusion
	Results
	Personal Progress
	Summary

	Appendix A
	Source Code

